

ACI Enhanced Endpoint Tracker

Contents:

	Introduction

	Install
	ACI Application

	Standalone Application

	Usage
	User Accounts

	Fabrics

	Dashboard

	Endpoints

	Settings

	API
	Getting Started with API

	API Access on the APIC

	Components
	mongoDB

	redisDB

	WebService

	eptManager

	eptSubscriber

	eptWorker

	Releases
	Version 2.1.2a

	Version 2.1.2

	Version 2.1.1

	Version 2.0.x

Indices and tables

	Index

	Module Index

	Search Page

Introduction

 Install

Install

The ACI EnhancedEndpointTracker can be installed directly on the APIC as an ACI app or deployed as
a standalone application hosted on a baremetal or virtual machine.

ACI Application

The application can be deployed on the APIC. There are two modes supported, both available on
ACI Appcenter [https://aciappcenter.cisco.com].

	mini [https://aciappcenter.cisco.com/enhancedendpointtracker-mini-2-2-1n-2-1-230.html] is backwards
compatible with APIC 2.x and 3.x. However, there are memory constraints that limit the supported
scale

	full [https://aciappcenter.cisco.com/enhancedendpointtracker-4-0-1g-2-1-228.html] scale application
supported on APIC 4.x and above.

After downloading the app, follow the directions for uploading and installing the app on the APIC:

	2.x Install Video Example [https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/App_Center/video/cisco_aci_app_center_overview.html]

	2.x Install Instructions [https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/App_Center/developer_guide/b_Cisco_ACI_App_Center_Developer_Guide/b_Cisco_ACI_App_Center_Developer_Guide_chapter_0110.html#d7964e613a1635]

	3.x Install Instructions [https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/App_Center/developer_guide/b_Cisco_ACI_App_Center_Developer_Guide/b_Cisco_ACI_App_Center_Developer_Guide_chapter_0110.html#d11320e725a1635]

Note

Ensure you select security domain all when installing on the APIC

In you are executing the mini app, the APIC will enforce a 2G memory limit and a 10G
disk quota. As a result, it may crash if there are a large number of endpoints or high number
events per second. As a best practice, it is recommended to deploy in full mode or
standalone mode if the total number of per-node endpoints exceeds 32k. You can determine
the per-node endpoint count via the following moquery on the APIC:

apic# moquery -c epmDb -x query-target=subtree -x target-subtree-class=epmIpEp,epmMacEp,epmRsMacEpToIpEpAtt -x rsp-subtree-include=count

If running mini mode and it is exceeding the memory limits, you may see the symptoms below:

	Consistent monitor restarts due to “subscriber no longer running”

	Monitor restart due to “worker ‘w0’ not longer active”

	Monitor stuck or restarting during “getting initial endpoint state”

Standalone Application

The standalone app is one that runs on a dedicated host/VM and makes remote connections to the
APIC opposed to running as a container on the APIC. For large scale fabrics or development
purposes, standalone is the recommended mode to run this application. The standalone app also has
a few different deployment options:

	all-in-one is a single container with all required processes running. This is similar to
mini mode executing on the APIC, however the memory and compute restrictions are based on the
host device and therefore can support much larger scale. This is the easiest way to deploy the
app as it can be started with a single command.

	cluster uses a distributed architecture to execute multiple container across one or more
nodes. This allows the app to scale with the size of the fabric. This is similar to the full
mode executing on the APIC but can be deployed in any custom environment that supports container
orchestration.

If you are deploying the cluster with more than one node, ensure there is connectivity between
each node in the cluster and the following ports are allowed:

	TCP port 2377 for cluster management

	TCP and UDP port 7046 for communication between nodes

	UDP port 4789 for overlay traffic

	TCP port 22 for auto-deployment and setup

All-in-One Mode

To execute in all-in-one mode, you need a host with docker installed. See the
Docker documentation [https://docs.docker.com/install/] for installing docker on your host.
Once installed, execute the following command to download the EnhancedEndpointTracker docker image
and run it:

host$ docker run --name ept -p 5000:443 -d agccie/enhancedendpointtracker:latest

The command will start an instance of EnhancedEndpointTracker with the web server running on port
5000. Login to the web UI at https://localhost:5000. See the usage
section for further details regarding how to use the app.

Cluster Mode - OVA

The EnhancedEndpointTracker app can be deployed in a distributed cluster. Users can deploy in their
own cluster or use a prebuilt OVA. This section will focus on the OVA.

Note

Please send an email to aciappcenter-support@external.cisco.com to request a temporary
download link for the EnhancedEndpointTracker OVA.

	The recommended sizing for the VM is as follows:

	
	8 vCPU

	16G memory

	75G harddisk, thick provisioned

	The OVA contains the following components preinstalled:

	
	Ubuntu 18.04.2 LTS

	OpenSSH

	Docker CE 18.09.02

	Python 2.7.15rc1

	Network manager

	EnhancedEndpointTracker docker image specific to the version of the OVA

	A copy of the EnhancedEndpointTracker
source code [https://github.com/agccie/ACI-EnhancedEndpointTracker] located in
/opt/cisco/src directory

To get started with the OVA, perform the following steps:

	Configure Host Networking

	Configure NTP and Timezone

	Configure the Cluster and Deploy the Stack

Configure Host Networking

Once the OVA is deployed, access the console with the credentials below. Note, you will be required
to change the password on first login.

	username: eptracker

	password: cisco

The OVA is simply a Ubuntu 18.04 install. Users can use any mechanism they prefer to initialize the
network. The example below uses network manager TUI which is preinstalled on the host.

	Enter sudo nmtui

	Choose ‘Edit a connection’

[image: standalone-console-nmtui-p1]

	Edit the appropriate connection. By default, the connection type is likely Automatic (DHCP)
but if you need to set a static IP address you will need to change the mode to Manual and the
set the appropriate info.

[image: standalone-console-nmtui-p3]

[image: standalone-console-nmtui-p4]

	To apply the updated configuration, you will need to deactivate and then activate the configured
interface.

[image: standalone-console-nmtui-p5]

[image: standalone-console-nmtui-p6]

	Ensure you also set the hostname for the host. You will need to logout and log back in to see the
hostname updated.

[image: standalone-console-nmtui-p8]

[image: standalone-console-nmtui-p9]

Configure NTP and Timezone

All timestamps for the app are based on the timestamp of the server itself. If you are running the
app on a cluster with more than 1 node or if the time on the host is unreliable, then timestamps for
events and analysis may be incorrect. Use timedatectl to configure your timezone and the ntp
servers.

	List the available options and set to the desired timezone.

eptracker@ept-node1:~$ timedatectl list-timezones | grep New
America/New_York
America/North_Dakota/New_SalemA

eptracker@ept-node1:~$ sudo timedatectl set-timezone America/New_York

	Use vim or your favorite editor to set the required NTP servers under /etc/systemd/timesyncd.conf

eptracker@ept-node1$ sudo vim /etc/systemd/timesyncd.conf

	Uncomment the NTP line and add the appropriate list of NTP servers. For example:

eptracker@ept-node1$ cat /etc/systemd/timesyncd.conf | egrep -A 1 Time
[Time]
NTP=172.16.1.1

	Restart the ntp process and validate the configuration was successful. Note, it may take
several a few minutes before ntp synchronizes the clock:

eptracker@ept-node1:~$ sudo timedatectl set-ntp true
eptracker@ept-node1:~$ sudo systemctl restart systemd-timesyncd

 eptracker@ept-node1:~$ timedatectl status
 Local time: Wed 2019-03-13 12:26:50 EDT
 Universal time: Wed 2019-03-13 16:26:50 UTC
 RTC time: Wed 2019-03-13 16:26:51
 Time zone: America/New_York (EDT, -0400)
 System clock synchronized: yes
 systemd-timesyncd.service active: yes <--------- synchronized
 RTC in local TZ: no

Configure the Cluster and Deploy the Stack

cluster mode with the OVA uses docker swarm for the overlay and network orchestration. Even if
there is only a single node, the swarm needs to be configured. Before starting, ensure that
networking has been configured on all nodes and they are able to communicate on the ports previously
listed.

All containers deployed in the stack rely on the agccie/enhancedendpointtracker:<version>
container. This is available on docker hub and is also available pre-installed on the OVA. There
is no internet requirement to get the app deployed on the OVA.

	Step 1: Use the app-deploy script to initialize the cluster and deploy the app

The app-deploy script performs the following operations

	Configure the host as a swarm leader

	Export the manager token to all other nodes and add them to the swarm

	Add a label called ‘node’ with the appropriate node number to each node in the cluster. The
docker compose file uses the node labels to ensure the db shards and replicas are properly
distributed.

	Create the docker compose file based on the desired number of shards, replicas, and workers
distributed across the cluster nodes.

	Deploy the stack.

The default swarm configuration is in the /opt/cisco/src/cluster/swarm/swarm_config.yml file.
You can edit this file before deploying the stack to adjust worker count, db scale, adjust which
port the web service is deployed, and enable/disable http. Additionally, you can pass in
arguments for worker count and db configuration which will override the swarm_config.

example deployment with large scale (default worker/shard/memory is sufficent for most setups)
eptracker@ept-node1:~$ app-deploy --deploy --worker 23 --db_shard 3 --db_replica 3 --db_memory 2.0
Number of nodes in cluster [1]: 3

UTC 2019-04-27 13:19:39.251||INFO||loading config file: /opt/cisco/src/cluster/swarm/swarm_config.yml
UTC 2019-04-27 13:19:40.018||INFO||compose file complete: /tmp/compose.yml
UTC 2019-04-27 13:19:41.038||INFO||initializing swarm master

Enter hostname/ip address for node 2: 192.168.4.112 <--- you will be prompted for node IP
Enter hostname/ip address for node 3: 192.168.4.113

Enter ssh username [eptracker]: <--- you will be prompted for credentials
Enter ssh password:

UTC 2019-04-27 13:19:59.752||INFO||Adding worker to cluster (id:2, hostname:192.168.4.117)
UTC 2019-04-27 13:20:02.670||INFO||Adding worker to cluster (id:3, hostname:192.168.4.118)
UTC 2019-04-27 13:20:04.540||INFO||docker cluster initialized with 3 node(s)
UTC 2019-04-27 13:20:04.541||INFO||deploying app services, please wait...
UTC 2019-04-27 13:30:07.130||INFO||2 services pending, re-check in 60.0 seconds
UTC 2019-04-27 13:31:07.483||INFO||app services deployed
UTC 2019-04-27 13:31:22.499||INFO||deployment complete

Note

The app-deploy script requires that all nodes in the cluster have the same
username/password configured. Once the deployment is complete, you can set unique
credentials on each node.

Tip

The app-deploy script is simply an alias to /opt/cisco/src/cluster/deploy.py
script with some auto-detection for which version to deploy based on the version of the OVA.

	Step 2: Manager the App via the web-GUI

After deployment is complete, open a web browser to the IP address of any node in the cluster.
Using the example above we could access the app on node-3 via to https://192.168.4.113/. The app
can be fully managed from the UI. See the usage section for further details regarding how to use
the app.

Cluster Mode Manual

Users may prefer to manually configure the cluster in any environment that supports container
orchestration. Deploying each container requires the container image which can be pulled from
docker hub [https://hub.docker.com/r/agccie/enhancedendpointtracker] or manually built using the
Dockerfile [https://github.com/agccie/ACI-EnhancedEndpointTracker/tree/master/build] on github.
Once built, the entry point for the container must be /home/app/src/Service/start.sh and
appropriate arguments and environmental variables are required.

Manually Deploying Cluster Mode with Docker Swarm

This section provides an example for manually deploying cluster mode with docker swarm. This example
uses ubuntu 18.04 with docker 18.09.2. It could be extended to support other docker
orchestration environments such as Kubernetes or Nomad. Refer to Container Arguments and
Environmental Variables for more info on required settings for manually deploying a container.

Note

These steps assume a linux host or VM. Using docker swarm to deploy a stack on MACOS or
Windows has not been tested and may not work as expected.

	Step 1: Install Docker

Further instructions for install docker on your
docs.docker.com [https://docs.docker.com/install/].

update apt and install required packages
sudo apt-get update && sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 gnupg-agent \
 software-properties-common

add Docker's official GPC KEY and setup the stable docker repository
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

update apt and install docker
sudo apt-get update
sudo apt-get install \
 docker-ce=5:18.09.2~3-0~ubuntu-bionic \
 docker-ce-cli=5:18.09.2~3-0~ubuntu-bionic containerd.io

add your username to docker group to run docker commands without root (required logout)
sudo usermod -aG docker eptracker

	Step 2: Install python and pull automation scripts

This step is only required if you are using the provided automation scripts to automate
deployment of the cluster and service stack. If you are using your own docker orchestration,
then this step can be skipped.

install python and python-pip
sudo apt install git python python-pip

pull the source code in dedicated directory and change ownership to 'eptracker'. Ensure
you substitute the username with your username.
sudo mkdir -p /opt/cisco/src
sudo chown eptracker:eptracker /opt/cisco/src -R
git clone https://github.com/agccie/ACI-EnhancedEndpointTracker.git /opt/cisco/src

install build python requirements
sudo pip install -r /opt/cisco/src/build/requirements.txt

Note

If you installed python and build requirements you can automate all remaining steps.
I.e., you can configure the swarm AND create the compose file AND deploy the
full stack with a single command. Refer to Configure the Cluster and Deploy the Stack for more info

python /opt/cisco/src/cluster/deploy.py --deploy

	Step 3: Configure the Docker Swarm

Docker Swarm consist of one or more managers and one or more workers. For redundancy there
should be multiple manager processes. The manager process can also be used to run
containers or just for monitoring/managing the swarm. In this example, we will deploy on
only three nodes which will all be managers. Note you can skip this step if you used the deploy
script in Step 2.

intialize node-1 as the swarm master with 10 year certificate
eptracker@ag-docker1:~$ docker swarm init --cert-expiry 87600h0m0s
Swarm initialized: current node (s6pbhtb34ttvv7f1k35df855l) is now a manager.
<snip>

get the manager token to use for other managers in the cluster
eptracker@ag-docker1:~$ docker swarm join-token manager
To add a manager to this swarm, run the following command:
 docker swarm join --token SWMTKN-1-4ef1xrfmosdecb5i4ckm6t4v1rdr95wkbdej4nla0d35mr3i8x-aad8vucl9lfjs65x3whe23upg 192.168.2.78:2377

assuming docker has been installed on node-2 and node-3, add them to the cluster as managers
eptracker@ag-docker2:~$ docker swarm join --token SWMTKN-1-4ef1xrfmosdecb5i4ckm6t4v1rdr95wkbdej4nla0d35mr3i8x-aad8vucl9lfjs65x3whe23upg 192.168.2.78:2377
This node joined a swarm as a manager.

eptracker@ag-docker3:~$ docker swarm join --token SWMTKN-1-4ef1xrfmosdecb5i4ckm6t4v1rdr95wkbdej4nla0d35mr3i8x-aad8vucl9lfjs65x3whe23upg 192.168.2.78:2377
This node joined a swarm as a manager.

Now that the swarm is initialized, verify that all nodes are available and are active.

eptracker@ag-docker1:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
s6pbhtb34ttvv7f1k35df855l * ag-docker1 Ready Active Leader 18.09.2
5flk9lvtppjoopugcp0ineo8l ag-docker2 Ready Active Reachable 18.09.2
oqcg9okajvgm2l0x74bqsh043 ag-docker3 Ready Active Reachable 18.09.2

The compose file used in this example will pin various db components to different nodes in the
cluster using a docker
placement constraint [https://docs.docker.com/compose/compose-file/#placement]. For this
functionality to be successful, we need add appropriate node labels to each node in the cluster.
This can be executed on any master node in the swarm.

set the node label for each node in the swarm
eptracker@ag-docker1:~$ docker node update --label-add node=1 ag-docker1
eptracker@ag-docker1:~$ docker node update --label-add node=2 ag-docker2
eptracker@ag-docker1:~$ docker node update --label-add node=3 ag-docker3

validate the node label is present
eptracker@ag-docker1:~$ docker node inspect ag-docker1 --format '{{ .Spec.Labels }}'
map[node:1]
eptracker@ag-docker1:~$ docker node inspect ag-docker2 --format '{{ .Spec.Labels }}'
map[node:2]
eptracker@ag-docker1:~$ docker node inspect ag-docker3 --format '{{ .Spec.Labels }}'
map[node:3]

	Step 3: Create the compose file to start the stack

In this example will use the swarm_config.yml referenced in Configure the Cluster and Deploy the Stack combined with the
automation scripts to create the compose file. Again, refer to Container Arguments and
Environmental Variables for required settings if you are manually creating a swarm
configuration file.

use --help for more options. Use --version for specific version else latest image is used.
eptracker@ag-docker1:~$ python /opt/cisco/src/cluster/deploy.py --config [--version 2.0.12]
eptracker@ag-docker1:~$ python /opt/cisco/src/cluster/deploy.py --config
Number of nodes in cluster [1]: 3
EST 2019-02-28 18:08:07.029||INFO||loading config file: /opt/cisco/src/cluster/swarm/swarm_config.yml
EST 2019-02-28 18:08:07.135||INFO||compose file complete: /tmp/compose.yml

verify compose file is present
eptracker@ag-docker1:~$ more /tmp/compose.yml
 networks:
 default:
 ipam:
 config:
 - subnet: 192.0.2.0/24
 services:
 db:
 command: '/home/app/src/Service/start.sh -r db -l '
 deploy:
 mode: global
 environment:
 - DB_CFG_SRV=cfg/db_cfg_0:27019,db_cfg_1:27019,db_cfg_2:27019
 - DB_RS_SHARD_0=sh0/db_sh_0_0:27017,db_sh_0_1:27017,db_sh_0_2:27017
 - DB_RS_SHARD_1=sh1/db_sh_1_0:27017,db_sh_1_1:27017,db_sh_1_2:27017
 - DB_RS_SHARD_2=sh2/db_sh_2_0:27017,db_sh_2_1:27017,db_sh_2_2:27017
 - DB_SHARD_COUNT=3
 - HOSTED_PLATFORM=SWARM
 - MONGO_HOST=db
 - MONGO_PORT=27017
 - REDIS_HOST=redis
 - REDIS_PORT=6379
 - LOCAL_REPLICA=0
 - LOCAL_SHARD=0
 - LOCAL_PORT=27017
 - DB_MEMORY=2.0
 - DB_ROLE=mongos
 image: agccie/enhancedendpointtracker:latest
 logging:
 driver: json-file
 options:
 max-buffer-size: 1m
 max-file: '10'
 max-size: 50m
 mode: non-blocking
 volumes:
 - db-log:/home/app/log
<snip>

	Step 4: Deploy the stack and verify

The final step is to deploy the stack and verify all services are operational. This can be done
on any master node. The syntax for the command is docker stack deploy -c <compose file> <stack
name>

deploy the stack
eptracker@ag-docker1:~$ docker stack deploy -c /tmp/compose.yml ept
Creating network ept_default
Creating service ept_db_sh_1_0
Creating service ept_db
Creating service ept_web
Creating service ept_redis
<snip>

Next verify that all required services are running. From the output below we can see the number
of configured replicas for each service, the number successfully running, and the external
exposed ports. We expect 1/1 for most replicas and the ept_web service exposed on port 80 and
port 443.

stack is running with 27 services
eptracker@ag-docker3:~$ docker stack ls
NAME SERVICES ORCHESTRATOR
ept 27 Swarm

verify all services are running
eptracker@ag-docker1:~$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
1y1vauo1yahi ept_db global 3/3 agccie/enhancedendpointtracker:latest
2r53aefqghyf ept_db_cfg_1 replicated 1/1 agccie/enhancedendpointtracker:latest
m7ryoimptzbt ept_db_cfg_2 replicated 1/1 agccie/enhancedendpointtracker:latest
vkqz5h2np5bt ept_db_sh_0_0 replicated 1/1 agccie/enhancedendpointtracker:latest
ofd174ixmeem ept_web replicated 1/1 agccie/enhancedendpointtracker:latest *:80->80/tcp, *:443->443/tcp
<snip>

further inspection to determine which node a specific service is running
eptracker@ag-docker1:~$ docker service ps ept_mgr
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
yvq6uunapsh1 ept_mgr.1 agccie/enhancedendpointtracker:latest ag-docker2 Running Running 5 minutes ago

The application stack has successfully been deployed.

Container Arguments

This section lists the available arguments to the /home/app/src/Service/start.sh startup script
which executed by default when starting the container.

-r role

The role for the container to execute. There are several different roles required for the app
to execute correctly. See Components for more details. The allowed rows as follows:

all-in-one (default role)
all-in-one starts all required processes within the same container. This can be combined with
count option to adjust the number of workers. This mode runs a single instance of mongo
with no sharding support.

web
web role will run the apache web process on port 80 and 443 with a self-signed certificate.
Additional docker arguments can be included to expose these ports on whatever external ports
are required.

redis
will run a single instance of redis on REDIS_PORT which defaults to 6379

db
runs a single instance of mongo v3.6.10. There are several required environmental
variables. If not provided the container will restart.

	DB_ROLE

	DB_SHARD_COUNT

	DB_CFG_SRV

	DB_MEMORY

	LOCAL_PORT

	LOCAL_REPLICA

	LOCAL_SHARD

mgr
runs an instance of manager process. There should only be a single instance of manager running
for the entire application. The manager is also responsible for initializing the db cluster and
therefore requires the following environment variables previously defined within db role:

	DB_CFG_SRV

	DB_SHARD_COUNT

watcher
runs single instance of the watcher process with provided identity. watcher will also start
exim4 process used for sending email notifications, if configured.

worker
runs one or more instances of worker process. The worker process uses count option to set the
number of worker instances running within the container. The identity assigned to each worker
is relative to the initial identity provided. For example, if an id of 5 is assigned to the
worker and a count of 3 is provided, then there will be three workers started in the container
with id’s 5, 6, and 7.

It is recommended to use -c 1 when executing the worker role.

-i identity
unique integer identity required for mgr, watcher, and worker components.

Note

Ensure that there are no overlapping identities per role. A duplicate id will result
in race conditions that can trigger invalid analysis.

-c count
count is an integer for the number of workers to run within a single container. This is applicable
to all-in-one and worker roles only.

-l log-rotation
enables log rotation within the container. If an external component is managing log rotation or you
are using stdout for all logging then this is not required.

Warning

the application can perform extensive logging. If there is no component performing the
log rotation then -l should be provided.

Note

all logs are saved to /home/app/log or a sub folder within this directory.

-s stdout
enables all logging to stdout. Note that stdout is not currently supported with web role.

Environmental Variables

There are several required environmental variables depending on which role the container is
executing.

	HOSTED_PLATFORM

	Should be statically set to SWARM. This is required for proper creation of various config
instance files. This should be set on all containers.

	MONGO_HOST

	the hostname of the db role with DB_ROLE = mongos. This should be set on all containers.

	MONGO_PORT

	the LOCAL_PORT number of the db role with DB_ROLE = mongos. This should be set on all containers.

	REDIS_HOST

	the hostname of the redis role container. This should be set on all containers.

	REDIS_PORT

	the port number where redis is exposed. This should be set on all containers.

	DB_ROLE

	The role can be mongos, configsvr, or shardsvr. The application requires at
least one instance of each. If running as configsvr, the replica set name is statically
configured as cfg. If running as a sharsvr, the replcia set is statically configured as ‘sh$LOCAL_SHARD’ where shard number starts at 0.

	DB_SHARD_COUNT

	the number of db shards. This is used by mgr process during db init.

	DB_CFG_SRV

	used by mongos instance to connect to configsvr replica set. This will be in the format
cfg/<configsvr0-hostname:configsvr0-port, ...>. For example, if there is a replica
set of 3 config servers each exposed on port 27019 with hostname db_cfg_0, db_cfg_1,
db_cfg_2, then DB_CFG_SVR should be set to cfg/db_cfg_0:27019,db_cfg_1:27019,db_cfg_2:27019

	DB_MEMORY

	Amount of memory this instance of mongo is allowed to use. This is measured in GB and
can be a float. For example, 1.5 would limit mongo instance to 1.5 GB of memory.

	LOCAL_PORT

	local tcp port to expose running instance of mongo

	LOCAL_REPLICA

	replica number for this mongo instance. LOCAL_REPLICA should be set to 0 for mongos
role. The configsvr and shardsvr are each deployed in replica sets so each instance will
have a LOCAL_REPLICA starting at 0.

	LOCAL_SHARD

	shard number for shardsvr instance. For mongos and configsvr this should be set to 0.

 Usage

Usage

This section assumes EnhancedEndpointTracker has already been installed. Please refer to the
Install for more details regarding installation steps. This page will cover general usage of
the application. Note that some sections are specific to restricted to standalone mode only.

User Accounts

Note

This section is only applicable to standalone mode. In app mode the APIC handles all
authentication and authorization requests.

Once the application is installed, the default credentials are as follows:

	username: admin

	password: cisco

You can click the Users [image: users-icon] icon at the top right of the page to modify credentials along
with adding and modifying users. The app supports an admin role which has full read and write
access along with a read-only user role. Refer to api for more details regarding required
role for each operation.

Fabrics

Note

This section is only applicable to standalone mode. In app mode the fabric is auto
discovered when the app is installed. Only one fabric will be monitored.

Click the Home [image: home-icon] icon to access the home page and add fabrics to monitor. Multiple fabrics
can be monitored by a single app and you can search for an endpoint from the Home page across all
fabrics. Simply click the Add icon and enter the fabric name. Once submitted you will be
redirected to the Settings page to further configure various monitoring options.

[image: standalone-add-fabric]

Dashboard

The dashboard page provides an overview of the current status of the fabric monitor. You can see an
overall count for the total number of active endpoints, a history of the fabric monitor events,
along with the uptime of the monitor. Operators can control the monitor via the Start [image: start-icon]
and Stop [image: stop-icon] icons.

Tip

Loopback addresses and pervasive SVIs are tracked but are not considered as active
endpoints within the fabric and do not count toward the total active count. Additionally,
if an endpoint has been deleted the records remain within the database and can be
searched/viewed but will not count toward the total active count.

[image: fabric-dashboard]

Operators can quickly find an endpoint of interest by typing in the corresponding MAC, IPv4, or IPv6
address in the search bar at the top of the page. The search returns the number of endpoints matched
along with the full address, endpoint type, encapsulation, VRF name, and EPG name where the endpoint
is learned.

[image: fabric-typeahead-endpoint-search]

If the fabric is not running or eptManager is not active, then an appropriate message is
displayed at the top of the Dashboard page.

Endpoints

There are several analyses performed and as a result several endpoint tables that can be viewed.
Each page supports various filtering, a total count for number of endpoints matching filter,
flexible sorting on attributes of interest, and resizable columns.

[image: fabric-endpoint-pages]

Browse allows operators to view the Current Endpoint State of for the fabric. Use this page
to walk through all active endpoints, filter on currently offsubnet, stale, or rapid endpoints.

Moves shows all endpoints that have moved within the fabric. The table is sorted by most recent
event but can also be sorted based on available column. It is extremely useful to sorted based on
move event count which will show any endpoints that are unstable in the fabric. In the example below
we can see that 10.1.1.101 has moved 37k times which indicates we may have
a misconfiguration that needs to be addressed.

[image: fabric-endpoint-moves-page]

There are additional pages for Rapid, Offsubnet, Stale, and Cleared records. Each of
these pages are historical records for past detection events. Similar to Moves, operators can
sort and page through results as needed.

Endpoint Details

The power of the EnhancedEndpointTracker app is the Endpoint Detail page. This allows operators
to see the current state of endpoint within the fabric along with the historical records of what has
happened to the endpoint in the past. On the Overview section, the current state of the endpoint is
listed. As seen in the example below, this includes the current location of the endpoint in the
fabric including VRF, EPG, pod, node, interface, encap, and rewrite information. All nodes where the
endpoint is remotely learned (XR) is also available. Also, a summary count of each event type that
has occurred for this endpoint is displayed. If an endpoint is currently rapid, offsubnet, or stale
it will be highlighted along with the list of affected nodes.

[image: fabric-endpoint-detail]

Tip

All columns are resizable. Simply click to the left of the column name and drag the column
to make it wider.

	History displays the local learn events for the endpoint in the fabric along with delete
events

	Detailed is a per-node history of events that has occurred for this endpoint. It provides an
additional search bar to filter on a specific attribute such as node, epg, pcTag, etc… This is
extremely helpful for experienced operators who need to know the state and history of the endpoint
on a specific node.

	Move displays the move events for this endpoint. Each row has the source and destination for
the move.

	Rapid displays the rapid events detected for this endpoint. The timestamp when the endpoint
was flagged as rapid along with the total number of epm events at that instance and the calculated
rate of events are also displayed

	OffSubnet displays offsubnet events detected for this endpoint. The affected node, interface,
encap, and EPG are also displayed. It’s common that a misconfigured endpoint fails subnet check on
the ingress leaf but still triggers a remote learn on another node. For this reason, the remote
node column is available so operators know which leaf the offsubnet endpoint originated from.

	Stale displays stale events detected for this endpoint. Similar to the other tables, the
affected node, interface, encap, EPG, and remote node are captured. Generally, a stale endpoint is
a remote learn pointing to an incorrect leaf. This table includes the expected remote node at the
time the stale event was detected.

	Cleared displays the timestamp and reason an endpoint was cleared from the fabric by this app.

There are a few actions that can be performed on an endpoint.

[image: fabric-endpoint-actions]

	Dataplane Refresh will query the APIC for the most recent state of the endpoint in the fabric
and update the app database. This is used as a sanity check to ensure that the state of the
endpoint reported in the app is 100% correct. There is no impact to this operation but it does
require that the fabric monitor is actively running.

	Delete Events will delete the endpoint information from the app database. It has no impact on
the fabric. This is a useful mechanism to delete historical information on endpoints you no longer
care about. After the entry is removed from the app, a refresh is also triggered to ensure the app
stays in sync with the fabric. Therefore, you may notice that after the delete the endpoint is
immediately relearned by the app.

	Clear Endpoint allows the operator to clear an endpoint from the fabric on one or more nodes.
This operation requires SSH credentials are configured under the fabric Settings. When
clearing an endpoint, operators can provided a list of nodes. Operators can also use the available
toggles:

	Clear on All Active Nodes will clear the endpoint on all nodes that currently have the
endpoint learned. This includes both local learns and remote learns

	Clear on All Offsubnet Nodes will clear the endpoint on all nodes that have currently
learned the endpoint offsubnet

	Clear on All Stale Nodes will clear the endpoint on all nodes that are currently stale.

Warning

Clearing the endpoint will trigger an EPM delete in the fabric. This can cause a
traffic impact to the endpoint until it is relearned in the fabric.

[image: clear-fabric-endpoint]

Settings

The settings section is divided into multiple sub-sections. Ensure you click the Save [image: save-icon]
icon to apply your changes. If you update the connectivity settings you will need to restart the
fabric monitor for them to be applied.

Connectivity

Note

APIC hostname and API credentials are auto detected in app mode and cannot be changed.

Connectivity settings containing hostname and APIC credentials are required to access the fabric. An
APIC username with admin role on the all security domain is required. SSH credentials are
only required if clear endpoint functionality is required. For ssh, a user with admin read
role is required. When settings are saved the credentials are checked and an error is displayed if
the credentials are invalid

[image: fabric-settings-connectivity]

Notifications

There are very flexible notification options. Users can choose to be notified via syslog and email
for each of the analysis and detection mechanisms available. Once you’ve saved the settings you
can test both syslog and email servers by clicking the Send test syslog and send test email
buttons, respectively.

By default email notifications are sent directly to the mail server corresponding to configured
email address. By default SMTP messages are sent on port 587 with TLS encryption but can be
configured for standard port 25 or any required custom port. Many public mail exchanges will
not accept email directly from unknown hosts. You can configure email notifications to be sent
through an SMTP relay along with required SMTP authentication.

In the example below, syslog notifications are generated for all events and an email is sent if a
stale endpoint is detected.

[image: fabric-settings-notifications]

Syslog/Email Requirements

Syslogs and Email notifications are sent from the eptWatcher process. There are one or more
DNS lookups performed before the message is sent. The following ports need to be allowed:

Syslog

	DNS lookup (UDP port 53) for A-record of syslog server

	Syslog frame (UDP port 514 or custom configured port)

Email

	DNS lookup (UDP port 53) for MX-record of email servers to reach configured email domain

	DNS lookup for corresponding A-record of each returned email server

	SMTP (TCP port 587 or custom configured port) connection to send the email to the selected
email server

Note

When executing in app mode, the container is executed on the APIC and the source IP of
syslog/email notifications will be translated to the APIC inband or out-of-band address.
When running in standalone mode, the IP will be from the docker host.

Remediate

The application can be configured to automatically remediate offsubnet or stale endpoints. By
default, auto-remediation is disabled.

Remediation is performed by opening an ssh connection to the affected leaf and issuing an epm clear
command to delete the endpoint. Ssh credentials are required to perform this action. When an
endpoint is cleared there is an entry logged to the Remediation database and a notification may be
sent. Fabric operators have full visibility into what clear events have occurred.

[image: fabric-settings-remediate]

Advanced

There are several nerd knobs available to affect how the app is running. The default settings are
suitable for most deployments. However, there may be scenarios where this settings need to be
updated. The following settings are available within the Advanced section.

If you are using the API then these settings would apply to fabric and eptSettings objects.

[image: fabric-settings-advanced]

Enable/Disable Specific Analysis

Each analysis feature can be enabled/disabled as needed. Disabling analysis for uninteresting events
can improve worker efficiency. The following analysis is available:

	Move tracks move events within the fabric. When a move is detected, an event is added to the
eptMove table and an optional notification is sent.

	Offsubnet analysis keeps track of all configured fvSubnet/fvIpAttr objects in the fabric and
corresponding mapping to fvAEPg/fvBD. When an IP learn occurs, the vrf VNID and pcTag from the
endpoint are used to derive the originating EPG and corresponding BD. The IP is checked against
all subnets configured for that BD and if it doesn’t match it the endpoint is flagged as
offsubnet. This mechanism can be used for both local (PL/VL) learns along with remove (XR) learns.
When an offsubnet endpoint is detected, an event is added to the eptOffsubnet table and the
is_offsubnet flag is set for the endpoint in the eptEndpoint table.

	Stale analysis tracks where in the fabric an endpoint is locally learned. When a new learn is
seen on a node, it is cross referenced to where it is expected to be learned. If the learn does
not point to the expected leaf (or leaf-pair in the case of vPC) then the endpoint is flagged as
stale. Note, stale analysis also includes the appropriate logic to handle bounce/bounce-to-proxy
scenarios. When a stale endpoint is detected, an event is added to the eptStale table and the
is_stale flag is set for the endpoint in the eptEndpoint table.

	Rapid analysis is a mechanism that counts the number of events received across all nodes for
a single endpoint. If the number of events per minute exceed the configured threshold, then the
endpoint is flagged as rapid and further events from this endpoint are ignored until the rapid
hold-down timer have expired. Rapid analysis helps operators quickly determine if an endpoint is
unstable in the fabric. Additionally, it protects the app from processing excessive events from
an unstable endpoint. When a rapid endpoint is detected, an event is added to the eptRapid
table and the is_rapid flag is set for the endpoint in the eptEndpoint table.

Event Count

Fabric monitor events (i.e., starting and stopping the monitor) are wrapped at a configurable count.
Endpoint events are also wrapped within the database. Some events, such as local endpoint history
and endpoint moves, are wrapped per endpoint. Other events, such as offsubnet and stale events, are
wrapped per node and per endpoint. Users can set the following thresholds:

	Max Fabric Monitor Events the maximum number of fabric monitor events to keep. If the
threshold is exceeded then older events are discarded.

	Max Endpoint Events the maximum number of endpoint events to keep. This applies to several
endpoint tables such as eptEndpoint, eptMove, and eptRapid.

	Max Per-Node Endpoint Events the maximum number of per-node endpoint events to keep. This
applies to all endpoint tables that are keyed per node. This includes eptHistory,
eptOffsubnet, eptStale, and eptRemediate.

Rapid Endpoint Paramaters

It is helpful be notified when an endpoint is creating a high number of events. This often indicates
that the endpoint is unstable. When a endpoint is flagged as rapid, analysis is temporarily disabled
for that endpoint and notifications are sent. Endpoints events are counted across all nodes and a
rate of events per minute is calculated at regular intervals. When the configured threshold of
events per minute is exceeded, the endpoint is flagged as rapid and analysis is disabled for the
holdtime. If refresh is enabled, an API refresh request is sent to determine the current state of
the endpoint after it is no longer marked as rapid.

	Rapid Event Threshold number of events per minute before an endpoint is marked as rapid.

	Rapid Holdtime is the number of seconds to ignore new events from an endpoint marked as rapid.

	Rapid Refresh, when an endpoint is no longer rapid the state of db is out of sync from the
fabric. When endabled, a refresh is triggered to determine the current state of the previously
rapid endpoint.

Stale Analysis

When stale analysis is enabled, there are a few events that user may not wish to be treated as a
stale event. A stale endpoint is generally a remote learn (XR) pointing to a leaf where the endpoint
is no longer local. If the endpoint is no longer local in the fabric and the XR entry still exists
on a node in the fabric, then the ‘stale-no-local’ logic is applied. If the endpoint is local on
multiple nodes at the same time, then the last local node is assumed to be the correct entry and
the ‘stale-multiple-local’ logic is applied. Note, this logic does not apply to vpc-attached
endpoints which are expected to be learned on both nodes within the vpc.

	Stale-no-local enable stale-no-local detection

	Stale-multiple-local enable stale-multiple-local detection

Startup Event Queueing

This app heavily leverages subscriptions for keeping the app db in sync with the APIC. When the
fabric monitor is started it needs to build the initial db state and setup appropriate MO
subscriptions. It is possible that changes are occurring during the initial build. To capture these
events, the subscriptions are started before the MO builds. After the build completes, any event
received is then analyzed.The number of events queued is dependent on the rate of events and the
build time. It may be desirable to ignore the events during initialization, in which case queue
events can be disabled.

	Queue initial events enables queueing of all standard MO events during build

	Queue initial endpoint events enables queuing of all EPM events during endpoint build

Subscription Heartbeats

The subscription process monitors the health of the websocket and manages login token and
subscription refreshes. It also polls the APIC at a regular interval to ensure that the nginx
process is reachable and responsive. There is a query sent with a hearbeat timeout once per
heartbeat interval. If there are consecutive heartbeat failures, up to the configured
heartbeat retry count, then the APIC is marked as unreachable and the subscription process will
restart. Set the heartbeat interval to 0 to disable heartbeat functionality.

Note

The fabric monitor needs to be restarted for heartbeat settings to take affect.

	Heartbeat Retries maximum number of successive heartbeat failures before APIC connection is
declared unusable and subscription thread is closed

	Heartbeat Interval interval in seconds to perform heartbeat query to ensure APIC connection
is available and responsive. Set to 0 to disable heartbeat.

	Heartbeat Timeout timeout in seconds for a single heartbeat query to complete

Session Handling

By default the APIC session is gracefully restarted based on the aaaLogin maximumLifetimeSeconds
attribute. Users can override the session timeout to a value lower than the aaaLogin lifetime by
setting a limit on the session time.
Starting in ACI 4.0, the refresh time is configurable up to the maximum lifetime of the subscription.
Increasing the refresh time reduces the number of queries sent to the APIC. This can be done by
setting the Refresh Time. All nodes in the fabric must be running 4.0 or above else refresh time is
limited to 60 seconds.

Note

The fabric monitor needs to be restarted for session settings to take affect.

	Session Timeout maximum time in seconds before new login and websocket is started for APIC
session

	Subscription Refresh Time time in seconds between subscription refreshes.

 API

API

The EnhancedEndpointTracker app has a fully documented
swagger-ui [https://swagger.io/tools/swagger-ui/] conforming to the open api 3.0 standard. You
can access the swagger docs running on the app at
https://APP_IP/docs [https://localhost:5000/docs].

[image: swagger-ui-p1]

Note

The swagger-ui page is only available when running in standalone mode.

The API provides paging, advanced filtering and sorting, and attribute projections. The full syntax
is documented within the swagger docs. The docs also include authentication and authorization
requirements per REST endpoint. For example, to create a fabric the user must be authenticated and
have an admin role.

[image: swagger-ui-p2]

Getting Started with API

To begin you need to login and get a session identifier. Subsequent API requests must provide the
session id in a cookie named session or an HTTP header named session. To login, provide a
username and password to the user login API. Note, this is also documented within the swagger-ui
docs under the user object. The example below uses curl and assumes that an instance for the app
is running with HTTPS service on localhost:5000.

host$ curl -skX POST "https://localhost:5001/api/user/login" \
 --cookie-jar cookie.txt --cookie cookie.txt \
 -H "Content-Type: application/json" \
 -d "{\"password\":\"cisco\", \"username\":\"admin\"}"
result:
 {"session":"tBoERKg8qXbldyRZ/tkn4/9I8PUapQHDYbMepzSw1b6ZEW1NKur0JyscDv9b80Nf/pZB8U4Q6megY8B++a32OQ==","success":true,"token":""}

On successful login the web-server will reply with both the session id and an HTTP Set-Cookie header
with the same value. This allows users to POST to the login url and receive the session cookie in
JSON reply and within a cookie. Subsequent requests only need to reference the cookie for
authentication.

For example, to get the list of configured fabrics referencing the existing cookie:

host$ curl -skX GET "https://localhost:5000/api/fabric?include=fabric,apic_hostname" \
 --cookie-jar cookie.txt --cookie cookie.txt \
 -H "Content-Type: application/json"
result:
{"count":1,"objects":[{"fabric":{"apic_hostname":"esc-aci-network.cisco.com:8062","dn":"/uni/fb-fab4","fabric":"fab4"}}]}

API Access on the APIC

The APIC restricts stateful applications to use GET and POST methods only along with
enforcing static URL endpoints. Since this app uses RESTful GET, POST, PATCH, and
DELETE operations along with dynamic endpoints, a proxy mechanism was implemented to tunnel
all requests through POST to a single URL on the APIC. This allows for seemless migration of
the source code for both frontend and backend components when running on the APIC or running in
standalone mode. For the proxy operation, the following three fields are required in each POST:

	method is the original HTTP method intended for the app (GET, POST, PATCH, or
DELETE)

	url is the original url such as /api/fabric

	data is any required data sent in a POST or PATCH request that needs to be proxied to
the backend services.

The user must also have admin read access on the APIC and use the APIC aaaLogin api to acquire a
token for accessing the app API. The token must be included in all requests an HTTP header named
DevCookie.

	If running in mini mode, use the following url for all request:

https://APIC_IP/appcenter/Cisco/EnhancedEndpointTrackerMini/proxy.json

	
	If running in full mode, use the following url for all requests:

	http://APIC_IP/appcenter/Cisco/EnhancedEndpointTracker/proxy.json

An example using curl on the APIC CLI:

login to the APIC with appropriate admin credentials
apic:~> export token=`curl -skX POST "https://127.0.0.1/api/aaaLogin.json" \
 -H "Content-Type: application/json" \
 -d '{"aaaUser":{"attributes":{"name":"username", "pwd":"password"}}}' \
 | python -m json.tool | grep token | cut -d'"' -f4`

verify that a token was acquired
apic:~> echo $token
akoAAAAAAAAAAAAAAAAAAOWxfZ8iEOFKQRpFiNNT1w2qXUFV8Gt2PyJ43FG8lGi2gu//zEOU8lpWx1LNS1BG49mY6XjaXeI9m9RtgWhzEGlWWIJ7RgFBW3SOnUlbHs0kj8Xcsj0ZOxanBdWwA3c5TWDys7wpGbxVlz926MrR4KR3NOGCILjde86KnhbPqedgfNqVA2/cF5heh8sck7oTK4pcnu2pn7f4WDULXJ4gEA5rMWiYgtrSTiG+oeclkt4v

read the auto-discovered fabric objects
curl --header "DevCookie: $token" \
 --header "Content-Type: application/json" \
 -skX POST "https://127.0.0.1/appcenter/Cisco/EnhancedEndpointTrackerMini/proxy.json" \
 -d '{
 "method": "GET",
 "url":"/api/fabric?include=fabric,apic_hostname",
 "data": {}
 }'
result:
{"count":1,"objects":[{"fabric":{"apic_hostname":"https://172.17.0.1","dn":"/uni/fb-esc-aci-fab4","fabric":"esc-aci-fab4"}}]}

 Components

Components

The EnhancedEndpointTracker app is composed of several components that can be deployed as either
multiple processes running within the same container in mini or all-in-one mode or as
separate containers distributed over multiple nodes in full or cluster modes.

[image: backend-components-p1]

mongoDB

mongoDB [https://www.mongodb.com/] 3.6 is used for persistent storage of data. In
mini mode this is a single mongo process with journaling disabled and wireTiger cache size
limit to 1.5G memory. In cluster mode, it runs as a distributed database utilizing mongos,
configsvr in replica set, and multiple shards configured in replica sets. Sharding is enabled for
a subset of collections, generally based on endpoint address.

redisDB

redisDB [https://redis.io/] is in an memory key-store database. It is used as a fast IPC
between components. There are two main messaging implementations in this app.

	Publish [https://redis.io/commands/publish]/
Subscribe [https://redis.io/commands/subscribe] mechanism allows for a component to publish
a message on a channel that is received by one more subscribers

	Message queue via rpush [https://redis.io/commands/rpush] and
blpop [https://redis.io/commands/blpop] with support for queue prioritization.

WebService

Python Flask [http://flask.pocoo.org/] and Apache [https://httpd.apache.org/] are used for
the web service.

eptManager

eptManager is a python process that is responsible for starting, stopping, and monitoring
eptSubscriber proceses along with tracking the status of all available eptWorker
processes. It is also responsible queuing and distributing all work that is dispatched to worker
processes. There is only a single instance of eptManager deployed within the app.

eptSubscriber

eptSubscriber is a python process responsible for communication with the APIC. It collects
the initial state from the APIC and stores into the db. It establishes and monitors a websocket
to the APIC with subscriptions for all necessary MOs and ensures the db is in sync with the APIC.
eptSubscriber process also subscribes to all epm events and dispatches each event to
eptManager which will enqueue to an appropriate eptWorker process to analyze the event.
There is a single eptSubscriber process running for each configured fabric. This process is
always a subprocess running in the same container as eptManager.

The following objects are collected and monitored by the subscriber process:

	datetimeFormat

	epmIpEp

	epmMacEp

	epmRsMacEpToIpEpAtt

	fabricAutoGEp

	fabricExplicitGEp

	fabricNode

	fabricProtPol

	fvAEPg

	fvBD

	fvCtx

	fvIpAttr

	fvRsBd

	fvSubnet

	fvSvcBD

	l3extExtEncapAllocator

	l3extInstP

	l3extOut

	l3extRsEctx

	mgmtInB

	mgmtRsMgmtBD

	pcAggrIf

	pcRsMbrIfs

	tunnelIf

	vnsEPpInfo

	vnsLIfCtx

	vnsRsEPpInfoToBD

	vnsRsLIfCtxToBD

	vpcRsVpcConf

eptWorker

There is a configurable number of eptWorker processes that can be executed. Each eptWorker
must have a unique id and will be deployed with a role of either a worker or watcher
process. eptManager requires at least one active eptWorker for all roles before it can
start any fabric monitors. The eptWorker worker process performs the bulk of the
computations for the app. It receives epm events and performs move/offsubnet/stale/rapid analysis
and stores the results into the db. If an endpoint is flagged by one of the analyses, a message
is sent to eptManager to enqueue to an eptWorker watcher process. The watcher
will perform the configure notifications along with executing rechecks to prevent incorrect
detection of transitory events.

The full source code for the Flask web-service implementation and all ept components is available on
Github [https://github.com/agccie/ACI-EnhancedEndpointTracker].

 Releases

Releases

This page will track information about each new release along with new features and any known
issues.

Version 2.1.2a

Released Sep 12 2019

	fix for Docker swarm node IP discovery

	change default worker count from 10 to 23 for swarm

	ensure web service is closing redis connections for each pub/sub message

	ensure all messages are sent on support qnum (regression from queue count reduction fixes)

	force username for ssh remote login procedures to ensure custom domain is maintained

Version 2.1.2

Released Aug 20 2019

	fix for #46 fabricNode parsing broken on recent build breaks all eptNode tables

	update worker hash calculation for better load-balancing of work in scale setups

	use pub/sub redis messaging for broadcast between subscriber and workers

	reduce queue count and queue stat objects when using pub/sub broadcasts

	address timeouts on techsupport collection in multi-node standalone cluster

	reduce memory utilization on startup by streaming class queries

	include sort on all concrete objects initializations to prevent out-of-order results during paging

	use local user directory instead of global tmp for compose and deploy logs to prevent access
problems for multiuser deployments

	additional user validation checks during docker swarm deployment

	increase manager timeout on app-status to support scale setups

	fix mongo cursor timeouts due to docker routed-mesh mongos load-balancing in multi-node standalone
cluster

	propagate session/subscriber errors into fabric events so user can quickly isolate subscription
restart errors

	added UI and backend support for configurable heartbeat interval, timeout, and retry count

	improve queue cleanup on fabric restart

	logrotate updates for apache logs

	UI polling service fix to prevent rapid requests on 400/500 errors

	UI optimize fabric status and manager polling mechanisms

	UI fix for cascading polling events on refresh

Version 2.1.1

Released Mar 21 2019

	Configurable SMTP settings including custom SMTP port, TLS encryption, and support for SMTP relay
with optional authentication

	Configurable session timeout

	Configurable Refresh time for subscriptions. Staring in ACI 4.0 the subscription refresh time can
be extended up to 10 hours but will be limited to 60 seconds in older versions. The app will
auto-detect the version of code and apply a max of 60 seconds if APIC or switch is <4.0.
Previously this was static at 30 seconds.

	Moved managed object event handling from subscriber process to dedicated worker. This addresses
issues such as high rate of tunnelIf events during initial build that can cause subscriber process
to hang.

	Cross reference fabricNode and topSystem to ensure inactive nodes are included in initial build.
This resolves a bug TEP calculation for vpcs if one node in the vpc is offline when app starts

	Disable accurate queue-length calculation on UI as it impacts manager process under scale

	Updates to app deployment scripts to allow user to pass in all arguments via command-line in
addition to editing cluster yaml file

	Trigger fabric restart on worker heartbeat failure and new worker detection

	Removed exim4 dependencies and rely on native python smtplib for email notifications

Version 2.0.x

Released Feb 22 2019

Initial 2.0 release. This was a complete rewrite with focus on scalability while maintaining and
augmenting the feature set from the 1.x versions. Features include:

	Support for full endpoint scale fabric

	Easy to use GUI with fast type-ahead search for any mac/ipv4/ipv6 endpoint in the fabric

	Full details on current state of an endpoint in the fabric along with historical information

	Move, offsubnet, rapid, and stale endpoint analysis

	Configurable notification options via syslog/email for various events detected by the app

	Capability to clear an endpoint on one or more nodes via GUI or API

	Distributed architecture allowing app to grow based on the size of the fabric

	Fully documented swagger API to allow for easy integration with other tools

	Flexible deployment options include APIC and APIC-mini apps along with standalone all-in-one
container and standalone docker-swarm cluster.

 Index

Index

_images/fabric-endpoint-detail.png
e Endpoint Tracker 000

=]} Search MAC or IP for this fabric. l.e., 00:50:56:01:8B:12, 10.1.1.101, or 2001:a:b::65
Dashboard

@ O Ea0.1.1.101

YO Fabric fab4 VRF unijtn-ag/ctx-v1 EPG uniftn-aglap-applepg-e1
Local on pod-1 node (101,102) interface ag_po1001 encap vian-101 mac 00:00:00:00:00:0A
'3 Remotely learned on 1 node. A

37,738 Moves 68 Rapidevents o OffSubnetevents 0 Staleevents o Clear events

@ History o Detailed o Move e Rapid e OffSubnet o Stale @ Cleared

Time~ Local Node Status Interface Encap PCTAG MAC EPG
Feb 20 2019 - 12:13:24 (101,102) ag_po1001 vian-101 49153 00:00:00:00:00:0A uniftn-ag/ap-app/epg-e1
Feb 20 2019 - 12:13:24 (101,102) ag_po1002 vian-101 49153 00:00:00:00:00:08 uniftn-ag/ap-app/epg-e1
Feb 20 2019 - 12:13:24 (101,102) ag_po1001 vian-101 49153 00:00:00:00:00:0A uniftn-ag/ap-app/epg-e1
d

=
=
=

Feb 20 2019 - 12:13:24 (101,102) - ag_po1001 vian-101 49153 00:00:00:00:00:0A uni/tn-ag/ap-app/epg-e1

_images/fabric-endpoint-moves-page.png
stk Endpoint Tracker 000

‘ Search MAC or IP for this fabric. l.e., 00:50:56:01:8B:12, 10.1.1.101, or 2001:a:b::65 ‘

o Moves

Time Type Address Event Count VRF/BD
Feb 20 2019 - 13:35:31 ipvd 10.1.1.101 37,850 uni/tn-ag/ctx-v1
Feb 20 2019 - 11:20:51 ipvd 10.4.2.2 6 uni/tn-scale/ctx-v3

| Feb 20 2019 - 11:20:44 ipvd 10.4.4.2 6 uni/tn-scale/ctx-v3
Feb 20 2019 - 11:20:51 ipvd 10.4.6.2 6 uni/tn-scale/ctx-v3

Feb 20 2019 - 11:20:44 ipva. 104222 6 uni/tn-scale/ctx-v5.

Feb 20 2019 - 11:20:51 ipva. 10.4.242 6 uni/tn-scale/ctx-v5

Feb 20 2019 - 11:20:52 ipva. 10.453.2 6 uni/tn-scale/ctx-v8

_images/fabric-dashboard.png
Endpoint Tracker 0006

Search MAC or IP for this fabric. l.e., 00:50:56:01:8B:12, 10.1.1.101, or 2001:a:b::65

Dashboard

= 28,463 18,220 11,264

Endpaints
Mac 1Pva 1Pv6
®
o ° o fab4 Uptime: 0 days, 00:07:25
ot Queued: 0
Time~ Status Description
Feb 20 2019 - 11:15:54 -
Feb 20 2019 - 11:10:18 Initalizing building endpoint db
Feb 20 2019 - 11:10:18 Initalizing analyzing 177773 endpoint records
Feb 20 2019 - 11:09:17 Initalizing getting initial endpoint state
Feb 20 2019 - 11:09:17 Initalizing building subnet db
Feb 20 2019 - 11:09:16 Initalizing building epg db
Feb 20 2019 - 11:09:16 Initalizing building vnid db
Feb 20 2019 - 11:09:16 Initalizing building tunnel db
Feb 20 2019 - 11:09:16 Initalizing building node db
Feb 20 2019 - 11:09:14 Initalizing collecting base managed objects
Feb 20 2019 - 11:09:13 Initalizing apic version: 3.2(4d)
Feb 20 2019 - 11:09:13 Initalizing connected to apic-1, esc-aci-network.cisco.com:8062
Feb 20 2019 - 11:09:12 - monitor config change start

13 total

_images/fabric-endpoint-actions.png
O Dataplane Refresh
@ Delete Events

A Clear Endpoint

_images/fabric-settings-connectivity.png
ciseo. Endpoint Tracker O @ O

‘ Search MAC or IP for this fabric. l.e., 00:50:56:01:8B:12, 10.1.1.101, or 2001:a:b::65 ‘

shboard

rl 0000 fbs

Endpoints
Connectivity | Hostname
& 192.168.4.62
4 Notifications
Sattings APIC Username
Remediate admin
?
About Advanced APIC Password

SSH Username

admin

SSH Password

_images/fabric-settings-notifications.png
0200

Connectivity
Notifications
Remediate

Advanced

fab4
Notification Options

() Move Syslog
‘ Move Email

Syslog
Syslog Server

moss.cisco.com

Email
Email Address

agossett@cisco.com

&) SMTP Relay

SMTP Relay Server

mail.cisco.com

Syslog Port
514

SMTP Port
587

() SMTP Authentication

SMTP Username

agossett@cisco.com

@ Rapid Email

v Send test email

v Send test syslog

SMTP Password

‘ Clear Email

_images/fabric-endpoint-pages.png
‘ Search MAC o IP for this fabric. 1.
Dashboard

j=

Endpoints

%

soures =2 Rapid

B Browse

[Moves

? [7 offsubnet
About

A stale
T Cleared

_images/fabric-settings-advanced.png
0»v00

Connectivity
Notifications
Remediate

Advanced

fab4

Each analysis feature can be enabled/disabled as needed. Disabling analysis for uninteresting events can improve worker efficiency. By default, analysis is enabled for all events. See the online
documentation for more information about each feature.

() Analyze Move () Analyze OffSubnet () Analyze Stale () Analyze Rapid

Fabric monitor events (i.e., starting and stopping the monitor) are wrapped at a configurable count. Endpoint events are also wrapped within the database. Some events, such as local endpoint history and
endpoint moves, are wrapped per endpoint. Other events, such as offsubnet and stale events, are wrapped per node and per endpoint.

Max Fabric Monitor Events Max Endpoint Events Max Per-Node Endpoint Events

1024 64 64

It is helpful be notified when an endpoint creating a high number of events. This often indicates that the endpoint is unstable. When a endpoint is flagged as rapid, analysis is temporarily disabled for that
endpoint and notifications are sent. Endpoints events are counted across all nodes and a rate of events per minute is calculated at regular intervals. When the configured threshold of events per minute is
exceeded, then endpoint is flagged as rapid and analysis is disabled for the holdtime. Additionally, if refresh is enabled, an API refresh request is sent to determine the current state of the endpoint after it
is no longer marked as rapid.

() Rapid Refresh

Rapid Event Threshold Rapid Holdtime (seconds)
2048 600

When stale analysis is enabled, there are a few events that user may not wish to be treated as a stale event. A stale endpoint is generally a remote learn (XR) pointing to a leaf where the endpoint is no
longer local. If the endpoint is no longer local in the fabric and the XR entry still exists on a node in the fabric, then the 'stale-no-local' logic is applied. If the endpoint is local on multiple nodes at the same
time, then the last local node is assumed to be the correct entry and the 'stale-multiple-local' logic is applied. Note, this logic does not apply to vpc-attached endpoints which are expected to be learned
on both nodes within the vpc.

() Stale-no-local () Stale-multiple-local

subscriptions are enabled for several MOs during the initial db build. If events are received on the subscription before initialization has completed these events can be queued and serviced after
initialization. The number of events queued is dependent on the rate of events and the build time. It may be desirable to ignore the events during initialization, in which case queue events should be
disabled.

() Queue initial events () Queue initial endpoint events

By default the APIC session is gracefully restarted based on the aaalLogin maximumLifetimeSeconds attribute. Users can override the session timeout to a value lower than the aaalLogin below. Active
subscriptions to APIC are regularly refreshed. Starting in ACI 4.0, the refresh time is configurable up to the maximum lifetime of the subscription. Increasing the refresh time reduces the number of queries
sent to the APIC. This can be done by setting the Refresh Time. All nodes in the fabric must be running 4.0 or above else refresh time is limited to 60 seconds. Note that the fabric monitor needs to be
restarted for session settings to take affect.

Session Timeout (seconds) Session Refresh Time (seconds)

86400 60

_images/fabric-settings-remediate.png
(« JOX - X -} faba

Connectivity E Note valid ssh credentials are required for remediation actions.
Notifications When an endpoint is detected as offsubnet or stale, this application can be configured to automatically clear the endpoint.
Remediate | @ Auto Clear OffSubnet Endpoints

Advanced @ Auto Clear Stale Endpoints

_images/fabric-typeahead-endpoint-search.png
2001::128:

Matched:

,072

2001::128:101

2001::128:102

2001::128:103

2001::128:104

2001::128:105

2001::128:106

vlan-999

vlan-999

vlan-999

vlan-999

vlan-999

vian-999

uniftn-scale/ctx-v-large
uniftn-scale/ctx-v-large
uniftn-scale/ctx-v-large
uniftn-scale/ctx-v-large
uniftn-scale/ctx-v-large

uni/tn-scale/ctx-v-large

uniftn-scale/ap-scale-large/epg-epg-large
uniftn-scale/ap-scale-large/epg-epg-large
uniftn-scale/ap-scale-large/epg-epg-large
uniftn-scale/ap-scale-large/epg-epg-large
uniftn-scale/ap-scale-large/epg-epg-large

uni/tn-scale/ap-scale-large/epg-epg-large

_images/backend-components-p1.png
[
Redis IPC |-~
Multiple workers with unique id’s. At
T least one ‘worker” and one ‘watcher”

IPC between components required for application to run

} eptSubscriber
eptSubscriber created for

each fabric that is actively I

being monitored

_images/clear-fabric-endpoint.png
Clear Endpoint

This action is may impact dataplane traffic on the fabric until the endpoint is relearned.

Nodes

Clear on all nodes where the endpoint is currently learned

Not currently offsubnet on any node

N

Not currently stale on any node

Clear Endpoint

_images/home-icon.png

nav.xhtml

 Table of Contents

 		
 ACI Enhanced Endpoint Tracker

 		
 Introduction

 		
 Install

 		
 ACI Application

 		
 Standalone Application

 		
 All-in-One Mode

 		
 Cluster Mode - OVA

 		
 Cluster Mode Manual

 		
 Usage

 		
 User Accounts

 		
 Fabrics

 		
 Dashboard

 		
 Endpoints

 		
 Endpoint Details

 		
 Settings

 		
 Connectivity

 		
 Notifications

 		
 Remediate

 		
 Advanced

 		
 API

 		
 Getting Started with API

 		
 API Access on the APIC

 		
 Components

 		
 mongoDB

 		
 redisDB

 		
 WebService

 		
 eptManager

 		
 eptSubscriber

 		
 eptWorker

 		
 Releases

 		
 Version 2.1.2a

 		
 Version 2.1.2

 		
 Version 2.1.1

 		
 Version 2.0.x

_images/standalone-console-nmtui-p1.png
— NetworkManager TUI —

[Edit a_connection
Activate a connection
Set system hostname

Quit

<0K>

_images/standalone-console-nmtui-p3.png
Profile name
Device

+ ETHERNET

+ IPv4 CONFIGURATION
+ IPV6 CONFIGURATION

[¥] Automatically co
[¥] Available to all

Edit Connection

Disahled
Automat ic
Link-Local

<cancel> <0K>

_images/save-icon.png

_images/standalone-add-fabric.png
/Add a new fabric

_images/standalone-console-nmtui-p6.png
Bridge (dockero)
* dockero

_images/standalone-console-nmtui-p8.png
— NetworkManager TUI —

Edit a connection
Activate a connection

[Set system hostname
Quit

<0K>

_images/standalone-console-nmtui-p4.png
Profile name [f
Device

+ ETHERNET

+ IPv4 CONFIGURATION
Addresses

Gateway
DNS servers

Search domains

Edit Connection

<Remove>

<Remove>

<Remove>

Routing (No custom routes) <Edit...
Never use this netuork for default route
Ignore automatically obtained routes

Ignore automatically obtained DNS parameters

Require IPv4 addressing for this connection

+ IPV6 CONFIGURATION <Automatics

[¥] Automatically connect
[¥] Available to all users

<cancel> <0K>

_images/standalone-console-nmtui-p5.png
Please select an option

Edit a connection

Set system hostname

Quit

_images/standalone-console-nmtui-p9.png
NetworkManager TUI

——— Set Hostname

<Cancel> <OK>

_images/start-icon.png

_images/stop-icon.png

_images/users-icon.png

_static/ajax-loader.gif

_images/swagger-ui-p1.png
e

EnhancedEndpointTracker APl Documentation =

Iapildocs.

‘This documentation details the externally accessible APIs. Each API endpoint may have different authentication and authorization (role) requirements. Authorized
endpoints require a_session token provided in either a cookie or within the HTTP header. For additional security, a challenge token can also be req